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1. Introduction and Preliminaries
Over the last five decades, the study of fixed point(FP) theory has played a

key role in addressing issues related to nonlinear phenomena. The evolution of FP
theorems and the development of diverse techniques have significantly contributed
to advancing both pure and applied analysis, as well as to the fields of topology
and geometry.

In the year 1973, Geraghty [11] introduced a set of functions that extends the
Banach contraction principle. This significant contribution aimed to provide a more
versatile and comprehensive exploration, allowing researchers and mathematicians
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to extend their investigations beyond the traditional constraints of the Banach con-
traction principle. This exploration has opened new avenues for understanding the
behaviour of dynamical systems and their stability. Consequently, researchers have
been able to apply these extended concepts to various complex problems in math-
ematical physics and engineering, fostering a deeper comprehension of nonlinear
dynamics. This extension has proven valuable in various mathematical contexts,
fostering a deeper understanding of FP theorems and providing a more compre-
hensive perspective for mathematical analysis.

The idea of b−metric spaces(b-MS), initiated by Bakhtin [6] in 1989, served as
a generalization of traditional metric spaces. Subsequently, numerous papers have
been published on FP theory within these spaces. For a comprehensive exploration
of the further work and results in b-MS, interested readers are directed to [4, 5, 7,
9, 10].

Definition 1.1. [9] Consider a set X (which is non-empty) and a real number
s ≥ 1. A function ρ : X × X → [0,∞) is called a b-metric on X if, for all
x, y, δ ∈ X , the following conditions hold:

1. ρ(x, y) = 0 ⇐⇒ x = y,

2. ρ(x, y) = ρ(y, x),

3. ρ(x, y) ≤ s[ρ(x, δ) + ρ(δ, y)].

Then, (X , ρ) is known as a b-MS with parameter s.

Example 1.2. Consider a metric space (X , ρ) with parameters β > 1, λ ≥ 0.
Define the function ρ′(x, y) = λρ(x, y) + ρ(x, y)β for all x, y ∈ X . The resulting
space (X , ρ′) is a b-MS with the parameter s = 2β − 1 but does not qualify as a
metric space on X .

Definition 1.3. [1] A sequence (xn) in b-MS is called a b-Cauchy sequence if for
all ε > 0, there exists N ∈ N such that for all m,n ≥ N, ρ(xm, xn) < ε.

Definition 1.4. [1] A sequence (xn) in b-MS is said to converge to x ∈ X
if limn→∞ ρ(xn, x) = 0.

Definition 1.5. [1] A b-MS is said to be complete if every b-Cauchy sequence in
X is convergent to a point in X .

Definition 1.6. [11] Let Ω be the collection of all functions α : [0,∞) → [0, 1)
that satisfy the condition:

lim
p→∞

α(tp) = 1 implies lim
p→∞

tp = 0.



Solution of integral equation via Common Fixed Point Results ... 273

The Geraghty contraction, a theorem established by Geraghty, is expressed as
follows.

Theorem 1.7.[17] Consider a metric space (X , ρ) which is complete, and let M :
X → X be a mapping. Suppose there exists α ∈ Ω such that for all x, y ∈ X

ρ(Mx, My) ≤ α(ρ(x, y)) · ρ(x, y).

Then M has a unique fixed point z ∈ X .
In 2011, Dukic et al. [8] revisited Theorem 1.7, placing it within the context of

b−metric spaces as detailed in [20].

Definition 1.8. [20] Consider a b-MS (X , ρ) with a parameter s ≥ 1, and let Ω be

the set of all functions α : [0,∞) → [0,
1

s
) that adhere to the following condition:

lim
p→∞

α(tp) =
1

s
=⇒ lim

p→∞
tp = 0.

Theorem 1.9. [4] Consider a complete b-MS (X , ρ) with a parameter s ≥ 1, and
let M : X → X be a mapping. Suppose that there exists β ∈ Ω satisfying:

ρ(Mx, My) ≤ β((Θ(x, y))(Θ(x, y)), ∀x ≥ y,

where

Θ(x, y) = max{ρ(x, y), ρ(x, Mx), ρ(y, My), 1

2s

(
ρ(x, My) + ρ(y, Mx)

)
},

for all x, y ∈ X , then M has a unique fixed point x∗ ∈ X .

Definition 1.10. [10] Let A denote the family of all altering distance functions,
i.e.,

A =
{
ψ : [0,∞) → [0,∞)

∣∣∣ ψ is continuous, non-decreasing, and ψ(t) = 0 ⇐⇒ t = 0
}
.

A function ψ ∈ A is called an altering distance function if it satisfies:

1. ψ is continuous and non-decreasing on [0,∞);

2. ψ(t) = 0 if and only if t = 0.

Definition 1.11. [16] Let (X ,⪯) be a partially ordered set(POSET ), and let
M : X → X be a mapping. We say that M is monotone non-decreasing if for
x, y ∈ X , x ⪯ y implies M(x) ⪯ M(y).
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Theorem 1.12. [16] Let (X ,⪯) be a POSET and suppose that there is a metric
ρ on X such that (X , ρ) is a metric space which is complete. Let M : X → X be a
monotone non-decreasing mapping such that there exists s ∈ [0, 1) with

ρ(Mx, My) ≤ sρ(x, y), ∀x ⪯ y,

and assume that either M is continuous or X is such that if there is a non-decreasing
sequence {xp} → x, x ∈ X , then xp ⪯ x or xp ⪰ x for all p ≥ 1. Moreover, if there
is x0 ∈ X with x0 ⪯ Mx0 or x0 ⪰ Mx0, then M has a fixed point.

Theorem 1.13. [4] Let (X ,⪯) be a POSET , and suppose that there is a metric
ρ on X such that (X , ρ) is a metric space which is complete. Let M : X → X be an
increasing mapping such that there is x0 ∈ X with x0 ⪯ M(x0). Suppose that there
exists α ∈ Ω such that

ρ(Mx, My) ≤ α(ρ(x, y)) · ρ(x, y) for all x, y ∈ X with x ⪯ y,

and assume that either M is continuous or X is such that if there is an increasing
sequence
{xp} → x, x ∈ X , then xp ⪯ x for all p ≥ 1. In addition, if for all x, y ∈ X , there
exists z ∈ X which is comparable to x and y, then M has a unique fixed point in X .

Definition 1.14. [3] Let (X ,⪯) be a POSET and M, N : X → X . The pair (M, N)
is said to be weakly increasing if x ⪯ y =⇒ Mx ⪯ Ny for all x, y ∈ X .

Lemma 1.15. [21] If Ψ is an altering distance function and Y : [0,∞) → [0,∞)
is a continuous function with condition Ψ(t) > Y(t) for all t > 0, then Y(0) = 0.

In recent years, there has been a notable trend among researchers to generalize
Geraghty’s result across different metric spaces. This paper contributes to this
trend by extended some common fixed point(CFP) theorems specifically for (ψ,
β)- Geraghty contractive mapping with in the framework of b-MS.

2. Main results

Theorem 2.1. Let (X ,⪯) be a POSET and suppose that there exists a b−metric
ρ on X such that (X , ρ) is a complete b-MS. Let M and N be weakly increasing
mappings from X to itself. Suppose the following inequality holds for all x ⪰ y,

ψ(ρ(Mx, Ny)) ≤ β(Θ(x, y))α(Θ(x, y)), for all x ⪰ y, (2.1)

where

Θ(x, y) = max{ρ(x, y), ρ(x, Mx), ρ(y, Ny), 1

2s

(
ρ(x, Ny) + ρ(y, Mx)

)
},
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and β ∈ Ω, ψ ∈ Ψ, and α : [0,∞) → [0, 1
s
) is a continuous function with the

condition ψ(t) > α(t), for all t > 0. Furthermore, assume that for each pair of
elements x, y ∈ X , there is z ∈ X which is comparable to both x and y. Assume also
that at least one of the mappings M or N is continuous, that is, for any sequence
{xn} ⊂ X with xn → x (with respect to ρ), we have Mxn → Mx (respectively
Nxn → Nx). Then M and N possess a unique common fixed point.
Proof. Assume x0 ∈ X is an arbitrary point in X such that Mx0 = x1 and Nx1 = x2.
Continuing in this manner, the sequences {xp} and {yp} in X can be constructed
as follows:

x2p+1 = Mx2p = y2p, x2p+2 = Nx2p+1 = y2p+1, ∀p ∈ N. (2.2)

As M and N are weakly increasing functions, we have

x1 ⪯ x2 ⪯ x3 · · · ⪯ x2p+1 ⪯ x2p+2 . . .

Thus,

y0 ⪯ y1 ⪯ y2 · · · ⪯ y2p ⪯ y2p+1 . . .

Assume that there is p ∈ N such that y2p−1 = y2p. We show that {xp} is a Cauchy
sequence.

ψ(ρ(y2p, y2p+1)) = ψ(ρ(Mx2p, Nx2p+1)) ≤ β(Θ(x2p, x2p+1))α(Θ(x2p, x2p+1))

where

Θ(x2p, x2p+1)

= max{ρ(x2p, x2p+1), ρ(x2p, Mx2p), ρ(x2p+1, Nx2p+1),
1

2s

(
ρ(x2p, Nx2p+1) + ρ(x2p+1, Mx2p)

)
}

= max{ρ(y2p−1, y2p), ρ(y2p−1, y2p), ρ(y2p, y2p+1),
1

2s

(
ρ(y2p−1, y2p+1) + ρ(y2p, y2p)

)
}

≤ max{ρ(y2p−1, y2p), ρ(y2p−1, y2p), ρ(y2p, y2p+1),
s

2s

(
ρ(y2p−1, y2p) + ρ(y2p, y2p+1)

)
}

= max{ρ(y2p−1, y2p), ρ(y2p−1, y2p), ρ(y2p, y2p+1),
1

2

(
ρ(y2p−1, y2p) + ρ(y2p, y2p+1)

)
}

= max{ρ(y2p−1, y2p), ρ(y2p, y2p+1)} = 0.

This implies
ψ(ρ(y2p, y2p+1)) = 0.

From this, it follows that y2p+1 = y2p. Therefore, ym = y2p−1 holds for all m ≥ 2p.
As a result, for all m ≥ 2p, we get xm = x2p. Hence the sequence {xp} is a Cauchy
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sequence.
As a second consideration, let us assume yp ̸= yp+1 for all p ≥ 1.
Define ∆p = ρ(yp, yp+1). Now, we aim to prove that ∆p → 0 as p → ∞. As x2p and
x2p+1 are comparable, we can deduce again from Equation (2.1),

ψ(ρ(y2p+2, y2p+1)) = ψ(ρ(Mx2p+2, Nx2p+1)) ≤ β(Θ(x2p+2, x2p+1))α(Θ(x2p+2, x2p+1))
(2.3)

where

Θ(x2p+2, x2p+1) = max{ρ(x2p+2, x2p+1), ρ(x2p+2, Mx2p+2), ρ(x2p+1, Nx2p+1),

1

2s

(
ρ(x2p+2, Nx2p+1) + ρ(x2p+1, Mx2p+2)

)
}

= max{ρ(y2p+1, y2p), ρ(y2p+1, y2p+2), ρ(y2p, y2p+1),
1

2s

(
ρ(y2p+1, y2p+1) + ρ(y2p, y2p+2)

)
}

≤ max{ρ(y2p+1, y2p), ρ(y2p+1, y2p+2), ρ(y2p, y2p+1),
s

2s

(
ρ(y2p, y2p+1) + ρ(y2p+1, y2p+2)

)
}

= max{ρ(y2p+1, y2p), ρ(y2p+1, y2p+2), ρ(y2p, y2p+1),
1

2

(
ρ(y2p, y2p+1) + ρ(y2p+1, y2p+2)

)
}

= max{ρ(y2p, y2p+1), ρ(y2p+1, y2p+2)}.

If ρ(y2p, y2p+1) ≤ ρ(y2p+1, y2p+2), then Θ(x2p+2, x2p+1) = ρ(y2p+1, y2p+2).
According to Equation (2.3), we obtain

ψ(ρ(y2p+2, y2p+1)) ≤ β(ρ(y2p+1, y2p+2))α(ρ(y2p+1, y2p+2)).

By Equation (2.1), we obtain

ρ(y2p+2, y2p+1) ≤
1

s
ρ(y2p+2, y2p+1), p ∈ N.

This is a contradiction. Hence, we conclude

Θ(x2p+2, x2p+1) = ρ(y2p+1, y2p). (2.4)

Subsequently, using Equation (2.3), we derive

ψ(ρ(y2p+2, y2p+1)) ≤ β(ρ(y2p+1, y2p))α(ρ(y2p+1, y2p)). (2.5)

By Equation (2.1), we obtain

ρ(y2p+2, y2p+1) ≤ ρ(y2p+1, y2p), p ∈ N. (2.6)

Similarly,
ρ(y2p+1, y2p) ≤ ρ(y2p, y2p−1), p ∈ N. (2.7)
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By combining Equation (2.6) and Equation (2.7), we obtain

ρ(y2p+2, y2p+1) ≤ ρ(y2p+1, y2p) ≤ ρ(y2p, y2p−1), p ∈ N.

Consequently, the sequence {∆p} decreases monotonically, therefore there is r ≥ 0
such that

lim
p→∞

∆p = r. (2.8)

As p → ∞ in Equation (2.5) and applying Equation (2.8), we obtain ψ(r) ≤ α(r),
for β ∈ Ω. This contradicts the statement of Theorem 2.1. Thus, r = 0.
This implies that ∆p → 0 as p → ∞.
Next, we show that {xp} is a Cauchy sequence. To demonstrate this, our objective
is to establish the Cauchy property for {x2p}. Assuming the contrary, let us suppose
that {x2p} is not a Cauchy sequence. Consequently, for any ε > 0, there are pk,
qk ∈ N ∪ {0} with the property pk > qk > k for all k > 0,

ρ(x2pk , x2qk) > ε and ρ(x2pk , x2qk−1
) < ε. (2.9)

Utilizing Equation (2.9) and applying the b-triangle inequality, we have

ε < ρ(x2pk , x2qk) ≤ s(ρ(x2pk , x2qk−1
) + ρ(x2pk−1

, x2qk)),
ε

s
≤ ρ(x2pk , x2qk−1

) + ρ(x2pk−1
, x2qk).

As k → ∞ in the above condition, we obtain

lim
k→∞

ρ(x2pk , x2qk) =
ε

s
.

Again applying the b-triangle inequality, we have

ρ(x2qk , x2pk−1
) ≤ s(ρ(x2qk , x2pk) + ρ(x2pk , x2pk−1

)).

As k → ∞ in the above condition, we obtain

lim
k→∞

ρ(x2qk , x2pk−1
) =

ε

s
.

Now,

ρ(x2qk , x2pk) ≤ s(ρ(x2qk , x2qk+1
) + ρ(x2qk+1

, x2pk)).

Noting that x2qk+1 =Mx2qk and x2pk = Nx2pk+1, we can write

ρ(x2qk , x2pk) ≤ s (ρ(x2qk , x2qk+1) + ρ(Mx2qk , Nx2pk+1)) .
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As k → ∞, we have

ε

s
≤ lim

k→∞
(ρ(Mx2qk , Nx2pk+1)).

As ψ is both continuous and non-decreasing, it follows that

ψ(
ε

s
) ≤ lim

k→∞
ψ(ρ(Mx2qk , Nx2pk+1)). (2.10)

From Equation (2.1), we have

ψ(ρ(Mx2qk , Nx2pk+1
)) ≤ β(Θ(x2qk , x2pk+1

))δ(Θ(x2qk , x2pk+1
)), (2.11)

where

Θ(x2qk , x2pk+1
) = max{ρ(x2qk , x2pk+1

), ρ(x2qk , Mx2qk), ρ(x2pk+1
, Nx2pk+1

),

1

2s

(
ρ(x2qk , Nx2pk+1

) + ρ(x2pk+1
, Mx2qk)

)
}

= max{ρ(y2qk−1
, y2pk), ρ(y2qk−1

, yy), ρ(y2pk , y2pk+1
),

1

2s

(
ρ(y2qk−1

, y2pk+1
) + ρ(y2pk , y2qk)

)
}

≤ max{ρ(y2qk−1
, y2pk), ρ(y2qk−1

, y2qk), ρ(y2pk , y2pk+1
),

s

2s

(
ρ(y2qk−1

, y2pk) + ρ(y2pk , y2pk+1
) + ρ(y2qk−1

, y2pk) + ρ(y2qk , y2qk−1
)
)
}

= max{ρ(y2qk−1
, y2pk), ρ(y2qk−1

, y2qk), ρ(y2pk , y2pk+1
),

1

2

(
ρ(y2qk−1

, y2pk) + ρ(y2pk , y2pk+1
) + ρ(y2qk−1

, y2pk) + ρ(y2qk , y2qk−1
)
)
}.

From Equation (2.4), we have

Θ(x2qk , x2pk+1
) ≤ ρ(y2qk−1

, y2pk).

Following Equation (2.11), it can be deduced that

ψ(ρ(Mx2qk , Nx2pk+1
)) ≤ β(ρ(y2qk−1

, y2pk))α(ρ(y2qk−1
, y2pk)). (2.12)

Repeating the limit process as k → ∞ in Equation (2.12) and considering the
property β ∈ Ω, we obtain

lim
k→∞

ψ(ρ(Mx2qk , Nx2pk+1
)) < α(

ε

s
).

Hence from Equation (2.10), we get

ψ(
ε

s
) ≤ lim

k→∞
ψ(ρ(Mx2qk , Nx2pk+1

)) ≤ α(
ε

s
).
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This is possible only if ε = 0. This is a contradiction. Therefore, {x2p} is a
b−Cauchy sequence, implying that {xp} is also a b−Cauchy sequence for all p ≥ 1.
Hence, there is ω ∈ X such that

lim
p→∞

xp = ω.

There after, we prove that ω is a fixed point of M.
Due to the continuity of M and the convergence x2p+1 → ω, it can be concluded that

ω = lim
p→∞

x2p+1 = lim
p→∞

Mx2p = Mω.

Thus, ω is a fixed point of M.
Also,

ψ(ρ(ω, Nω)) = ψ((Mω, Nω)) ≤ β(Θ(ω, ω))α(Θ(ω, ω)) (2.13)

where

Θ(ω, ω) = max{ρ(ω, ω), ρ(ω, Mω), ρ(ω, Nω), 1

2s

(
ρ(ω, Nω) + ρ(ω, Mω)

)
}

≤ ρ(ω, Nω).

Then, from Equation (2.13), we get

ψ(ρ(ω, Nω)) = ψ((Mω, Nω)) ≤ β(ρ(ω, Nω))α(ρ(ω, Nω)).

Consequently, ψ(1
s
) ≤ limk→∞ ψ(ρ(ω, Nω)) ≤ α(1

s
).

Hence Nω = ω. Therefore, Mω = Nω = ω. That is, ω is a CFP of M and N.
Next, we demand that CFP of M and N is unique. Assume on the contrary that

Mω = Nω = ω and Mϖ = Nϖ = ϖ but ω ̸= ϖ. As per the assumption, we can
substitute x with ω and y with ϖ into Equation (2.1), yielding

ψ(ρ(ω,ϖ)) = ψ(ρ(Mω, Nϖ)) ≤ α(ρ(ω,ϖ))β(ρ(ω,ϖ)) < β(ρ(ω,ϖ)).

Applying the statement of Theorem 2.1 and Lemma 1.15, we get ρ(ω,ϖ) = 0. It
is possible only if ω = ϖ. Thus, M and N have a unique common fixed point.

Definition 2.2. [15] Let (X ,⪯) be a POSET . We say that (X,⪯) is regular if
for every non-decreasing sequence {xp}p∈N in X (i.e. xp ⪯ xp+1 for all p) that
converges to some z ∈ X, we have xp ⪯ z for every p ∈ N.

Theorem 2.3. Let (X ,⪯) be a POSET and suppose that there exists a b−metric ρ
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on X such that (X , ρ) is regular. Let M, N : X → X be weakly increasing mappings,
satisfying

ψ(ρ(Mx, Ny)) ≤ α(Θ(x, y))β(Θ(x, y)), ∀x ⪰ y,

where

Θ(x, y) = max{ρ(x, y), ρ(x, Mx), ρ(y, Ny), 1

2s

(
ρ(x, Ny) + ρ(y, Mx)

)
},

and α belongs to Ω, ψ belongs to Ψ, and β : [0,∞) → [0, 1
s
) is a continuous

function with the condition ψ(t) > β(t) for all t > 0.
Furthermore, assume that for each pair of elements x, y ∈ X , there is z ∈ X that

is comparable to both x and y. Assume also that at least one of the mappings M
or N is continuous, that is, for any sequence {xn} ⊂ X with xn → x (with respect
to ρ), we have Mxn → Mx (respectively Nxn → Nx). Then M and N possess a
unique common fixed point.
Proof. Here, we introduce the same sequences {xp} and {yp} as employed in the
proof of Theorem 2.1. It is evident that {xp} constitutes a b-Cauchy sequence in
X , implying the existence of ω ∈ X such that

lim
p→∞

xp = ω. (2.14)

As X is regular, there is a non-decreasing sequence {xp} in X such that

xp ⪯ ω, ∀p ∈ N.

Therefore, xp and ω are comparable. Furthermore, by considering the limit as
p → ∞ in Equation (2.2) and utilizing Equation (2.14), we obtain

lim
p→∞

M(x2p) = lim
p→∞

x2p+1 = ω; lim
p→∞

N(x2p+1) = lim
p→∞

x2p+2 = ω. (2.15)

Taking x = x2p and y = ω in Equation (2.1), we have

ψ(ρ(Mx2p, Nω)) ≤ α(Θ(x2p, ω))β(Θ(x2p, ω)), (2.16)

where

Θ(x2p, ω) = max{ρ(x2p, ω), ρ(x2p, Mx2p), ρ(ω, Nω),
1

2s

(
ρ(x2p, Nω) + ρ(ω, Mx2p)

)
}

= max{ρ(x2p, ω), ρ(x2p, x2p+1), ρ(ω, Nω),
1

2s

(
ρ(x2p, Nω) + ρ(ω, x2p+1)

)
}.
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As p → ∞ in the above inequality and applying Equation (2.14) and Equation
(2.15), we obtain

Θ(ω, ω) = max{ρ(ω, ω), ρ(ω, ω), ρ(ω, Nω), 1

2s

(
ρ(ω, Nω) + ρ(ω, ω)

)
}

= max{0, 0, ρ(ω, Nω), 1

2s

(
ρ(ω, Nω) + 0

)
} = ρ(ω, Nω).

Subsequently, by Equation (2.16) and taking the limit as p → ∞ , we have

ψ(ρ(ω, Nω)) ≤ α(ρ(ω, Nω))β(ρ(ω, Nω)).

Using Equations (2.14) and (2.15), we derive

ψ(ρ(ω, Nω)) = 0.

Consequently, we have ω = Nω.
If we take x = ω and y = x2p+1 in Equation (2.1), then the outcome is

ψ(ρ(Mω, Nx2p+1)) ≤ α(Θ(ω, x2p+1))β(Θ(ω, x2p+1)), (2.17)

where

Θ(ω, x2p+1) = max{ρ(ω, x2p+1), ρ(ω, Mω), ρ(x2p+1, Nx2p+1),
1

2s

(
ρ(ω, Nx2p+1) + ρ(x2p+1, Mω)

)
}

= max{ρ(ω, x2p+1), ρ(ω, Mω), ρ(x2p+1, x2p+2),
1

2s

(
ρ(ω, x2p+2) + ρ(x2p+1, Mω)

)
}.

As p → ∞ in the above inequality and applying (2.14) and (2.15), we obtain

Θ(ω, ω) = max{ρ(ω, ω), ρ(ω, Mω), ρ(ω, ω), 1

2s

(
ρ(ω, ω) + ρ(ω, Mω)

)
}

= max{0, ρ(ω, Mω), 0, 1

2s

(
0 + ρ(ω, Mω)

)
} = ρ(ω, Mω).

Subsequently, by Equation (2.17) and taking the limit as p → ∞, we have

ψ(ρ(Mω, ω)) ≤ α(ρ(ω, Mω))β(ρ(ω, Mω)).

Using Equations (2.14) and (2.15), we derive

ψ(ρ(Mω, ω)) = 0.

Thus, we have ω = Mω = Nω. Therefore, ω is a CFP of M and N. Uniqueness of the
fixed point follows from Theorem 2.1. This completes the proof.
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3. Applications
As part of our applications, we explore Subsection 3.1, presenting several fixed

point theorems designed for contractions of integral type.

3.1. Conclusions for fixed point solutions for mapping satisfying a con-
traction of integral type

The focus of this section is to demonstrate fixed point results for mapping
adhering to a contraction of integral type in a complete ordered b-MS, we first
introduce some notations before presenting the proofs.

Consider the set χ comprising functions ϕ : [0,∞) → [0,∞) that adhere to:

1. For every compact subset of [0,∞), the function ϕ is Lebesgue integrable,

2. for every ϵ > 0, ∫ ∞

0

ϕ(t) dt < ϵ.

Consider a fixed positive integer N ∈ N∗. Let ϕi, 1 ≤ i ≤ N be a collection
belonging to χ. For all t ≥ 0, we have

I1(t) =

∫ t

0

ϕ1(s)ds,

I2(t) =

∫ I1(t)

0

ϕ2(s)ds =

∫ ∫ s
0 ϕ1(s)ds

0

ϕ2(s)ds,

I3(t) =

∫ I2(t)

0

ϕ3(s)ds =

∫ ∫ s
0 ϕ2(s)ds

0

ϕ3(s)ds,

...

IN−1(t) =

∫ IN−2(t)

0

ϕN−1(s)ds =

∫ ∫ s
0 ϕN−2(s)ds

0

ϕN−1(s)ds,

IN (t) =

∫ IN−1(t)

0

ϕN (s)ds.

Now we derive the following theorem.

Theorem 3.1. Suppose X is a POSET with a metric ρ making (X , ρ) a complete
b-MS. Let M, N : X → X be continuous and weakly increasing mappings, satisfying
the inequality:

IN(ψ(Θ(Mx, Ny))) ≤ α(Θ(x, y))IN(β(Θ(x, y))), ∀x ⪰ y, (3.1)
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where

Θ(x, y) = max{ρ(x, y), ρ(x, Mx), ρ(y, Ny), 1

2s

(
ρ(x, Ny) + ρ(y, Mx)

)
},

and α belongs to Ω, ψ belongs to Ψ, and β : [0,∞) → [0, 1
s
) is a continuous

function with the condition ψ(t) > β(t), ∀ t > 0.
Furthermore, assume that for each pair of elements x, y ∈ X , there is z ∈ X

that is comparable to both x and y. If either M or N is continuous, then M and N

possess a unique common fixed point.
Proof. Let us define ψ1 = IN ◦ ψ and β1 = IN ◦ β. Consequently, according to
Equation (3.1), we can express:

ψ1(Θ(Mx, Ny)) ≤ α(Θ(x, y))β1(Θ(x, y)), ∀x ⪰ y.

As we know that the composition of continuous functions remains continuous en-
sures that ψ1 and β1 are both continuous. By invoking Theorem 2.1, we derive the
desired outcome.
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